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IMPORTANCE Preventive trials of anti-amyloid agents might preferably recruit persons
showing earliest biologically relevant β-amyloid (Aβ) binding on positron emission
tomography (PET).

OBJECTIVE To investigate the timing at which Aβ-PET binding starts showing associations
with other markers of Alzheimer disease.

DESIGN, SETTING, AND PARTICIPANTS This longitudinal multicentric cohort study included 3
independent cohorts: Presymptomatic Evaluation of Experimental or Novel Treatments for
Alzheimer Disease (PREVENT-AD) (data collected from 2012-2020), Alzheimer Disease
Neuroimaging Initiative (ADNI) (data collected from 2005-2019), and Harvard Aging Brain
Study (HABS) (data collected from 2011-2019). In a 3-tiered categorization of Aβ-PET binding
spatial extent, individuals were assigned as having widespread Aβ deposition if they showed
positive signal throughout a designated set of brain regions prone to early Aβ accumulation.
Those with binding in some but not all were categorized as having regional deposition, while
those who failed to show any criterion Aβ signal were considered Aβ-negative. All
participants who were cognitively unimpaired at their first Aβ PET scan.

MAIN OUTCOMES AND MEASURES Differences in cerebrospinal fluid (CSF), genetics, tau-PET
burden, and cognitive decline.

RESULTS A total of 817 participants were included, including 129 from the PREVENT-AD
cohort (mean [SD] age, 63.5 [4.7] years; 33 [26%] male; 126 [98%] White), 400 from ADNI
(mean [SD] age, 73.6 [5.8] years; 190 [47%] male; 10 [5%] Hispanic, 338 [91%] White), and
288 from HABS (mean [SD] age, 73.7 [6.2] years; 117 [40%] male; 234 [81%] White).
Compared with Aβ-negative persons, those with regional Aβ binding showed proportionately
more APOE ε4 carriers (18 [64%] vs 22 [27%] in PREVENT-AD and 34 [31%] vs 38 [19%] in
ADNI), reduced CSF Aβ1-42 levels (F = 24 and 71), and greater longitudinal Aβ-PET
accumulation (significant β = 0.019 to 0.056). Participants with widespread amyloid binding
further exhibited notable cognitive decline (significant β = −0.014 to −0.08), greater CSF
phosphorylated tau181 (F = 5 and 27), and tau-PET binding (all F > 7.55). Using each cohort’s
specified dichotomous threshold for Aβ positivity or a visual read classification, most
participants (56% to 100%, depending on classification method and cohort) with regional Aβ
would have been classified Aβ-negative.

CONCLUSIONS AND RELEVANCE Regional Aβ binding appears to be biologically relevant and
participants at this stage remain relatively free from CSF phosphorylated tau181, tau-PET
binding, and related cognitive decline, making them ideal targets for anti-amyloid agents.
Most of these individuals would be classified as negative based on classical thresholds of Aβ
positivity.
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β -Amyloid (Aβ) and tau deposits are the pathological hall-
marks of Alzheimer disease (AD). Deposition of these pro-
teins is a continuous process that starts decades before the

onset of AD symptoms.1,2 While tau deposition may occasionally
precede Aβ accumulation,3 it is widely thought that Aβ pathol-
ogy is required for tau to spread beyond the medial temporal lobe
and begin the pathological cascade that leads to AD dementia.
Therefore, early Aβ abnormality is often viewed as an ideal tar-
get for clinical trials.4-7 Several such trials have reduced brain Aβ
without slowing AD clinical symptoms.8-10 These results have led
to circumspection about the role of Aβ in the AD pathological
cascade,11 but it also may be that Aβ should be targeted early on,
beforethespreadoftaupathology.12 Wethereforefocusedoncog-
nitivelyunimpairedolderadultsandinvestigatedtheearliesttim-
ing when biologically relevant signal of Aβ–positron emission to-
mography (PET) pathology can be detected. To do so, we took ad-
vantage of the spatial distribution of Aβ deposition as a method
for identification of individuals having different levels of Aβ bur-
den(noburden,regionaldeposition,andwidespreaddeposition).
In 3 independent cohorts, we then investigated the association
between spatial extent of Aβ burden and various AD markers in-
cluding tau-PET and cognitive decline.

Methods
Participants and Study Design
Participants provided written informed consent, and
research procedures were approved by the relevant ethics
committees. Specific inclusion and exclusion criteria per
cohort can be found in the eMethods in Supplement 1. Race
and ethnicity were collected in all 3 cohorts by self-report.

Presymptomatic Evaluation of Experimental
or Novel Treatments for Alzheimer Disease
The Presymptomatic Evaluation of Experimental or Novel
Treatments for Alzheimer Disease (PREVENT-AD)13 is an on-
going longitudinal observational cohort study launched in 2011
including 385 individuals.14 Here we studied a subsample of
129 participants who underwent PET. Data were collected from
2012 to 2020.

Alzheimer Disease Neuroimaging Initiative
The Alzheimer Disease Neuroimaging Initiative (ADNI)15 was
launched in 2003 as a public-private partnership. The pri-
mary goal of ADNI has been to test whether serial magnetic
resonance imaging, PET, other biological markers, and clini-
cal and neuropsychological assessment can be combined to
measure the progression of mild cognitive impairment and
early AD. We studied data from 400 individuals from the
ADNI-2 extension who underwent Aβ-PET with the 18

F-AV-45 tracer. Data were collected from 2005 to 2019.

Harvard Aging Brain Study
The Harvard Aging Brain Study (HABS)16 was launched in 2010
and is funded by the National Institute on Aging.17 We in-
cluded data from 288 persons from data release 2. Data were
collected from 2011 to 2019.

Neuropsychological Evaluation
In all 3 cohorts, participants underwent cognitive testing an-
nually. We analyzed both baseline (time of the first cognitive
assessment visit) and longitudinal cognitive performance.
In PREVENT-AD, the main neuropsychological measure was
the Repeatable Battery for the Assessment of Neuropsycho-
logical Status.18 We used the total score and the 2 composite
memory scores (immediate memory and delayed memory) as
the composite scores of interest. Longitudinal cognitive as-
sessment data were available for all participants, with a me-
dian (IQR) follow-up time of 7 (2-8) years.

In ADNI, we used the 2 composite scores reflective of
memory and executive functions as previously described.19,20

Longitudinal cognitive assessment was available for 393 indi-
viduals (98%), with a median (IQR) follow-up time of 6 (1-14)
years.

In HABS, we used the Preclinical Alzheimer’s Cognitive
Composite, a composite score including memory, executive
function, and semantic processing.21 All participants had a lon-
gitudinal cognitive assessment, with a median (IQR) fol-
low-up time of 6 (1-9) years.

Cerebrospinal Fluid
Cerebrospinal fluid (CSF) Aβ1-42, phosphorylated tau181

(pTau181) were measured using enzyme-linked immunoassay
(INNOTEST; Fujirebio) and available for 77 participants in PRE-
VENT-AD and measured using immunoassays (Elecsys; Roche)
and available for 276 participants in ADNI (eMethods in
Supplement 1).

PET Tracers and Processing
In all cohorts, T1-weighted magnetic resonance imaging was
processed using FreeSurfer (version 5.3 or 6) and parcellated
according to the Desikan-Killiany atlas.22 The Aβ tracers
differed between the cohorts: 18F-NAV-4694 was used in
PREVENT-AD, florbetapir was used in ADNI, and 11C-Pittsburgh

Key Points
Question In 3 cohorts of cognitively unimpaired persons, does
spatial distribution (regional vs widespread) of β-amyloid (Aβ)
deposition modify associations with Alzheimer disease–related
clinical and biological markers?

Findings In this cohort study of 817 participants that contrasted
Aβ-negative participants vs regional participants, those with
regional Aβ binding showed proportionately more apolipoprotein
E ε4 carriership, reduced cerebrospinal fluid Aβ1-42 levels, and
greater longitudinal Aβ-PET binding accumulation. Participants
with widespread amyloid binding further exhibited notable
cognitive decline and greater cerebrospinal fluid phosphorylated
tau181 and tau–positron emission tomography binding than others;
using visual reads or each cohort’s specified dichotomous
threshold for positivity almost all participants deemed Aβ-positive
had widespread Aβ deposition.

Meaning Regional Aβ binding appears to be biologically relevant
among individuals without significant tau and related cognitive
decline.
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compound B was used in HABS. The tau PET tracer was flor-
taucipir in all cohorts. We used standardized uptake value ra-
tios (SUVRs) in all cohorts; results were similar using distri-
bution volume ratio in HABS.

Regional Thresholds of Aβ Positivity
For all cohorts, Aβ-PET values were extracted across 7 bilat-
eral regions considered to be especially sensitive to early Aβ
accumulation: medial orbitofrontal, rostral anterior cingu-
late, posterior cingulate, precuneus, rostral middle frontal,
superior frontal, and inferior parietal cortices.23 Tracer
uptake in the first 5 of these regions of interest (ROI) has
been observed to be elevated in Aβ-negative individuals
who subsequently had significant evidence of amyloid
deposition.24 We used a Gaussian mixture modeling
approach to quantify specific Aβ thresholds in the 7 speci-
fied bilateral ROIs. Because Aβ typically follows a bimodal
distribution, we fitted 2 Gaussian distributions to categorize
Aβ positivity.23,25,26 These 2 distributions acquired from
Gaussian mixture modeling assigned to each participant a
probability of belonging to either the lower or higher
regional distributions and allowed identification of a thresh-
old of positivity for each ROI (eTable 1 in Supplement 1).
Individuals who were Aβ-positive in all 7 ROIs were classi-
fied as having widespread Aβ deposition; those who were
positive in 1 to 6 ROIs were included in a regional Aβ deposi-
tion group; those who were negative in all the ROIs were
termed Aβ-negative.

As expected, because of tracer differences, the SUVR re-
gional distributions from various cohorts differed (eFigure 1
in Supplement 1). In PREVENT-AD and HABS (18F-NAV-4694
and 11C-Pittsburgh compound B tracer, respectively), Gaussian
mixture modeling analyses provided a clear distinction be-
tween distributions using a threshold at the 90th percentile
of the lower distribution. In ADNI (florbetapir tracer), re-
gional positive and negative distinctions were less obvious; par-
ticipants appeared to show a more continuous distribution of
regional Aβ deposition, creating greater ambiguity in classifi-
cation. Following approaches used by others,27-29 we there-
fore assigned the ROI cutoffs at 50% probability. In sensitiv-
ity analyses, we tested the effect of modifying the number of
ROI for classification of spatial extent from 7 to 5 or 10
(eResults in Supplement 1).30

Comparison With Traditional Classification of Aβ Positivity
We also compared our 3-tiered spatial extent classification
method to more conventional approaches: (1) binary classifi-
cation based on cohort-specific global SUVR uptake,31-33 (2)
binary classification based on visual read, and (3) a 3-tiered
global quantification approach based on Centiloids (≤20, >20 to
≤40, and >40; eMethods in Supplement 1).

Tau-PET
For tau-PET, SUVR was calculated for 6 bilateral regions that
characterize early tau-PET deposition: entorhinal cortex,
amygdala, fusiform, parahippocampal, inferior temporal, and
middle temporal cortex.34 Voxelwise analyses were also per-
formed as secondary analyses (eResults in Supplement 1).

Statistical Analyses
In this cohort study, we analyze cross-sectional and longitu-
dinal data from observations collected in 3 aging cohorts.
We compared demographics, apolipoprotein E (APOE) ε4
status, CSF biomarkers, cross-sectional cognition, and tau-
PET SUVR across the 3 Aβ groups in each cohort separately
using analysis of covariance and χ2 tests for normally dis-
tributed continuous variables and categorical variables,
respectively. We used the Tukey Honestly Significant Differ-
ence post hoc test and Bonferroni correction to help inter-
pret differences between the 3 Aβ groups. Linear mixed-
effects models investigated longitudinal Aβ accumulation
(ADNI and HABS) and cognitive decline over 2 or more
sequential measurements (all cohorts) across the 3 Aβ
classes. For Aβ accumulation, age and sex were included as
covariates in the models. For cognitive decline, education
was further included as a covariate. The criterion for statis-
tical significance was 2-sided P ≤ .05 after correction for
multiple comparisons. Analysis took place between Septem-
ber 2019 and July 2021.

Results
Definition of Amyloid Groups Based on Aβ Spatial Extent
A total of 817 participants were included, including 129 from
the PREVENT-AD cohort (mean [SD] age, 63.5 [4.7] years; 33
[26%] male; 126 [98%] White), 400 from ADNI (mean [SD]
age, 73.6 [5.8] years; 190 [47%] male; 10 [5%] Hispanic, 338
[91%] White), and 288 from HABS (mean [SD] age, 73.7 [6.2]
years; 117 [40%] male; 234 [81%] White). The distribution of
participants in the 3 Aβ classes in the individual cohorts is
shown in Figure 1A. Aβ-negative proportions ranged across
cohorts from 48% (139 of 288) to 62% (81 of 129); the
regional group from 22% (28 of 129) to 27% (108 of 400);
and the widespread group from 16% (20 of 129) to 25%
(73 of 288). Most regional participants would have been
classified as negative using conventional quantitative or
visual binary classifications (Figure 1B). Examples of Aβ
uptake by cohort in the negative, regional, and widespread
groups are shown in Figure 2. See eFigure 2 in Supplement 1
for the distribution of abnormal regions in the regional
groups and eFigure 3A in Supplement 1 for voxelwise differ-
ences between groups.

Biological and Clinical Markers of Interest
The widespread and regional Aβ groups had greater propor-
tions of APOE ε4 carriers than the Aβ-negative group in
PREVENT-AD (Table; eTable 2 in Supplement 1). In ADNI, the
widespread group had a larger proportion of APOE ε4 carriers
than the regional group. In HABS, only the widespread group
had larger proportions of APOE ε4 carriers than both groups.

CSF biomarker measures were available for 7 7
PREVENT-AD and 276 ADNI participants. In both cohorts, the
regional and widespread groups had lower CSF Aβ1-42 levels
than Aβ-negative persons, and the widespread group also had
lower levels than the regional Aβ group (Table; eTable 2 in
Supplement 1).
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In PREVENT-AD, CSF pTtau181 was higher in the wide-
spread Aβ group than the Aβ-negative group. In ADNI, CSF
pTau levels were higher in the widespread group than in the
2 other groups.

Cross-Sectional and Longitudinal Cognition
There were negligible differences in cognitive performance
at baseline between the 3 Aβ classes in each cohort. Only the
PREVENT-AD widespread Aβ group had worse delayed
memory scores than the Aβ-negative group (F2,126 = 6.53;
eTable 3 in Supplement 1). Comparing cognitive decline over
time, all cohorts consistently showed that the widespread
Aβ groups experienced greater cognitive decline than the
Aβ-negative or regional groups on all cognitive indices

(all β < −0.06) (Figure 3; eTable 4 in Supplement 1). Further,
in ADNI (with up to 14 years of follow-up), participants in
the regional Aβ group experienced greater cognitive decline
than the Aβ-negative group (all β < −0.03). These associa-
tions remained when restricting follow-up to 7 years
(PREVENT-AD mean follow-up time), but the difference in
the regional group was lost when restricting analysis to 6
years (HABS mean follow-up).

Longitudinal Aβ Trajectories
Up to 4 years of longitudinal Aβ-PET data were available for
all ADNI participants (median follow-up, 3 years) and for 222
HABS participants (median follow-up, 2 years). In these 2 co-
horts, all 3 baseline Aβ groups showed Aβ accumulation rates

Figure 1. Defining the β-Amyloid (Aβ) Groups
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A, Individuals were separated into 3 groups based on their Aβ status in 7 cortical
regions: rostral anterior cingulate, precuneus, medial orbitofrontal, rostral
middle frontal, inferior parietal, superior frontal, and posterior cingulate.
According to the region-specific positivity, individuals who were Aβ-positive in
all 7 regions were classified as the widespread Aβ deposition group; those who
were positive in 1 to 6 regions were included in the regional Aβ group; while
those who fell below the cutoff in all the regions were considered as
Aβ-negative. B, The boxplots represent the distribution of the Centiloid values

of the 3 Aβ groups across the Aβ-negative, regional, and widespread groups in
all cohorts. Different shapes for the data points indicate the visual read
classification, and the color categorizes participants as Aβ+ or Aβ− based on
quantitative binary amyloid index using previously established global
thresholds for each cohort. ADNI indicates Alzheimer Disease Neuroimaging
Initiative; HABS, Harvard Aging Brain Study; PREVENT-AD, Presymptomatic
Evaluation of Experimental or Novel Treatments for Alzheimer Disease.
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significantly different from 0 and the rate of accumulation dif-
fered by group (eTable 5 in Supplement 1). In ADNI, the wide-
spread and regional Aβ groups showed faster Aβ accumula-
tion in all the 7 ROIs over time than the Aβ-negative group (all
β > 0.03). Interestingly, no difference was found between the
regional and widespread Aβ groups regarding Aβ accumula-
tion over time in any of the ROIs (eFigure 4 in Supplement 1).
In HABS, the widespread group accumulated Aβ faster than
the Aβ-negative group in 6 of 7 ROIs (all β > 0.05), while the
regional group showed greater Aβ accumulation than the
Aβ-negative group in 5 of 7 ROIs (all β > 0.02). The wide-

spread group had faster Aβ accumulation than the regional Aβ
group in rostral anterior cingulate and precuneus (all β > 0.04;
eFigure 4 and eTable 5 in Supplement 1).

Cross-Sectional Tau-PET
In PREVENT-AD, the widespread Aβ group had elevated tau-
PET signal in 5 of 6 regions investigated when compared
with Aβ-negative and regional Aβ groups (Figure 4; eTable 6
in Supplement 1). The regional Aβ group had greater tau-
PET binding in the entorhinal cortex and middle temporal
gyrus compared with the negative group. In both ADNI and

Figure 2. Examples of β-Amyloid (Aβ) Uptake From Participants in the Negative, Regional, and Widespread Groups

Negative Aβ groupA

Aβ− by visual read
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Illustrative examples of Aβ standardized uptake value ratios positron emission
tomography images from participants in the negative (A), regional (B), and
widespread (C) Aβ groups in the 3 cohorts. All shown images in the negative
group were negative based on visual read and had a Centiloid (CL) value of 10.
We show examples of participants in the regional group who were positive on
2 regions and negative based on visual read and participants who were positive
on 4 regions and positive based on visual read. In the Presymptomatic
Evaluation of Experimental or Novel Treatments for Alzheimer Disease
(PREVENT-AD) study cohort, the 2 and 4 regions positive were precuneus and
posterior cingulate (2), plus rostral anterior cingulate and medial orbitofrontal

(4). In the Alzheimer Disease Neuroimaging Initiative (ADNI) study cohort, the
regions were rostral middle frontal and inferior parietal (2) and the 4 were the
inferior parietal, precuneus, posterior cingulate, and medial orbitofrontal. In the
Harvard Aging Brain Study (HABS) cohort, the regions were rostral anterior
cingulate and medial orbitofrontal (2), plus rostral middle frontal and superior
frontal (4). All images shown in the Widespread group were positive based on
visual read and had a CL value of 85. The standardized uptake value ratios scales
were restricted to 0 to 4 in PREVENT-AD, 0 to 3 in ADNI, and 0 to 3.5 in HABS.
AV45 indicates 18F-AV-45; NAV, 18F-NAV-4694; PiB, 11C-Pittsburgh compound B.
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HABS, the widespread Aβ group had elevated tau-PET sig-
nal compared with both Aβ-negative and regional groups
across all regions investigated. Voxelwise analyses con-
firmed that the main group differences in tau-PET signal
were found between the widespread and negative groups in
the temporal lobe (eFigure 3B in Supplement 1).

Supplementary Analyses
Most of the regional participants would have been classified
as Aβ-negative using conventional classifications (Figure 1B;
eTable 7 for global binary classifications, eTable 8 for visual
read, and eTable 9 for Centiloids in Supplement 1). The main
results did not change when removing from the regional groups
participants who would have been classified as Aβ-positive
based on cohort specific global binary classifications or vi-
sual reads (eTables 10 and eTable 11 and eFigures 5-8 in Supple-
ment 1). Removing individuals with high Centiloids (>40) from
the regional group did not change the results. Removing in-
dividuals with high or intermediate Centiloids (>20) from the
regional group had almost no association in ADNI but ob-
scured most of the differences between negative and re-
gional groups in PREVENT-AD and HABS (eTable 12 and
eFigures 9 and 10 in Supplement 1). Changing the number of
ROIs from 7 to either 5 or 10 yielded similar results across the
main analyses (eTables 13 and 14 and eFigures 11 and 12 in
Supplement 1).

Discussion

Most AD drugs are targeting single disease pathways.
Removing Aβ when tau has already spread throughout the
cortex might not be ideal given that tau is more closely
related to cognitive decline than is Aβ.36,37 One way to iden-
tify individuals with Aβ, but with limited tau, could be to
assess Aβ spatial extent severity. The hypothesis would be
that individuals who have Aβ-PET binding restricted to a
few brain regions might not yet have extensive tau and
therefore be optimal candidates for anti-Aβ therapies.

The most common approach to analyze Aβ-PET is to
classify individuals into Aβ-negative and Aβ-positive groups
based on a global SUVR quantification or a visual read. How-
ever, this approach is not always optimal for detection of
individuals with early Aβ levels,38 particularly if Aβ has
started to accumulate regionally but is not yet globally
widespread.23,35 We took advantage of the literature sug-
gesting a spatiotemporal ordering of Aβ pathology to iden-
tify regions considered to be early Aβ accumulating
regions23,24 and classified cognitively unimpaired partici-
pants into those with Aβ-PET signal that is widespread,
regional, or negative. Our results (which did not vary when
we tested 5 or 10 ROIs for Aβ deposition) suggest that
by the time Aβ has spread extensively, tau has expanded

Table. Biological and Clinical Characteristics of Aβ Groups

Characteristic

Mean (SD)

PREVENT-AD ADNI HABS

Negative
(n = 81)

Regional
(n = 28)

Widespread
(n = 20)

Negative
(n = 202)

Regional
(n = 108)

Widespread
(n = 90)

Negative
(n = 139)

Regional
(n = 76)

Widespread
(n = 73)

Age, y 63
(4.61)a

63
(3.83)

66
(5.62)a

73
(5.81)a

73
(5.93)b

76
(5.35)a,b

73
(6.29)a

74
(6.08)

75
(5.93)a

Education, y 16
(3.53)

15
(2.75)

14
(2.46)

17
(2.59)

17
(2.56)

16
(2.70)

16
(3.09)

15
(3.20)b

16
(2.81)b

Race and ethnicity

Black/African
American

0 0 <5 9
(5)

8
(8)

<5 23
(17)

14
(18)

8
(11)

Hispanic <5 0 <5 <5 6
(11)

0 <5 <5 0

White 79
(97)

28
(100)

19
(95)

174
(93)

86
(86)

78
(95)

112
(81)

58
(76)

64
(88)

Otherc 0 0 0 5 (2) 6
(6)

<5 <5 <5 <5

Female, No. (%) 60
(74)

23
(82)

13
(65)

94
(47)a

61
(57)

55
(61)a

75
(54)d

55
(72)d

41
(56)

Male, No. (%) 21
(26)

5
(18)

7
(35)

108
(53)

47
(43)

35
(39)

64
(46)

21
(28)

32
(44)

APOE ε4 carriership,
No. (%)

22
(27)a,e

18
(64)d

13
(65)a

38
(19)a,d

34
(31)b,d

45
(50)a,b

20
(14)a

18
(24)b

41
(56)a,b

CSF Aβ1-42f 1265
(37.78)a,d

1043
(60.09)b,d

718
(71.53)a,b

1448
(30.13)a,d

1158
(40.07)b,d

802
(45.69)a,b

NA NA NA

CSF pTau181
f 46

(3.14)a
55
(4.89)

67
(6.15)a

19
(0.72)a

22
(0.96)b

29
(1.10)a,b

NA NA NA

Abbreviations: Aβ, β-amyloid; ADNI, Alzheimer Disease Neuroimaging Initiative;
APOE, apolipoprotein; CSF, cerebrospinal fluid; HABS, Harvard Aging Brain
Study; PREVENT-AD, Presymptomatic Evaluation of Experimental or Novel
Treatments for Alzheimer Disease; pTau, phosphorylated tau.
a P < .05 between Aβ-negative and widespread Aβ groups.
b P < .05 between regional Aβ and widespread Aβ groups.

c Other race included those who were American Indian or Alaskan Native, Asian,
Native Hawaiian or Other Pacific Islander, and more than 1 race.

d P < .05 between Aβ-negative and regional Aβ groups.
f In PREVENT-AD, CSF samples were available for 46 Aβ-negative, 19 regional,

and 12 widespread; in ADNI, CSF samples were available for 138 Aβ-negative,
78 regional, and 60 widespread.

Research Original Investigation Spatial Extent of Amyloid-β Levels and Associations With Tau-PET and Cognition

E6 JAMA Neurology Published online August 22, 2022 (Reprinted) jamaneurology.com

© 2022 American Medical Association. All rights reserved.

Downloaded From: https://jamanetwork.com/ by a Scelc - University of Southern California User  on 09/05/2022

https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamaneurol.2022.2442?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaneurol.2022.2442
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamaneurol.2022.2442?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaneurol.2022.2442
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamaneurol.2022.2442?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaneurol.2022.2442
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamaneurol.2022.2442?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaneurol.2022.2442
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamaneurol.2022.2442?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaneurol.2022.2442
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamaneurol.2022.2442?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaneurol.2022.2442
http://www.jamaneurology.com?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaneurol.2022.2442


Fi
gu

re
3.

Ch
an

ge
in

Co
gn

iti
on

O
ve

rT
im

e
Be

tw
ee

n
th

e
3

β-
Am

yl
oi

d
(A

β)
Gr

ou
ps

4 2

Total index z score

0 –2 –4

a

b

PR
EV

EN
T-

AD
A

χ2 10
,1

2
=

11
.7

3;
 P

=
.0

03

4 2

Delayed memory z score

0 –2 –4

a

b

χ2 8,
12

=
15

.5
5;

 P
=

.0
04

4 2

Immediate memory z score

0 –2 –4

20
12

20
16

20
18

20
20

Ye
ar

20
14

20
12

20
16

20
18

20
20

Ye
ar

20
14

20
12

20
16

20
18

20
20

Ye
ar

20
14

a

b

χ2 8,
12

=
12

.0
5;

 P
=

.0
2

N
eg

at
iv

e 
Aβ

 g
ro

up
Re

gi
on

al
 A

β 
gr

ou
p

W
id

es
pr

ea
d 

Aβ
 g

ro
up

4 2

Memory score

0 –2 –4

c

c

c

AD
N

I
B

χ2 9,
13

=
26

6.
43

; P
<.

00
1

4 2

Executive function score

0 –2 –4

c

c

c

χ2 9,
13

=
12

8.
07

; P
<.

00
1

4 2

PACCC5 z score

0 –2 –4

20
05

20
15

20
20

Ye
ar

20
10

20
05

20
15

20
20

Ye
ar

20
10

0
4

6

Vi
si

t
2

c

c

H
AB

S
C

χ2 9,
13

=
46

.4
7;

 P
<.

00
1

Li
ne

ar
m

ix
ed

-e
ffe

ct
m

od
el

sw
er

e
us

ed
to

as
se

ss
th

e
m

ai
n

as
so

ci
at

io
n

of
Aβ

gr
ou

ps
w

ith
lo

ng
itu

di
na

lc
og

ni
tio

n,
co

rr
ec

te
d

fo
ra

ge
,s

ex
,a

nd
ed

uc
at

io
n.

Th
e

an
al

ys
es

w
er

e
an

ch
or

ed
at

th
e

pa
rt

ic
ip

an
ts

’b
as

el
in

e
vi

sit
da

te
.

Co
gn

iti
ve

te
st

sc
or

es
fo

rt
he

Pr
es

ym
pt

om
at

ic
Ev

al
ua

tio
n

of
Ex

pe
rim

en
ta

lo
rN

ov
el

Tr
ea

tm
en

ts
fo

rA
lz

he
im

er
D

ise
as

e
(P

RE
VE

N
T-

AD
)(

A)
,A

lz
he

im
er

D
ise

as
e

N
eu

ro
im

ag
in

g
In

iti
at

iv
e

(A
D

N
I)

(B
),

an
d

H
ar

va
rd

Ag
in

g
Br

ai
n

St
ud

y
(H

AB
S)

(C
)c

oh
or

ts
w

er
e

re
pr

es
en

te
d

ov
er

tim
e

in
th

e
3

di
ffe

re
nt

gr
ou

ps
.T

he
w

id
es

pr
ea

d
Aβ

gr
ou

p
sh

ow
ed

a
gr

ea
te

rd
ec

lin
e

in
th

ei
rc

og
ni

tio
n

sc
or

es
w

he
n

co
m

pa
re

d
w

ith
th

e
2

ot
he

rg
ro

up
si

n
al

lc
oh

or
ts

.I
n

bo
th

AD
N

Ia
nd

H
AB

S,
th

e
re

gi
on

al
gr

ou
p

sh
ow

ed
a

gr
ea

te
rc

og
ni

tiv
e

de
cl

in
e

co
m

pa
re

d
to

th
e

Aβ
-n

eg
at

iv
e

gr
ou

p.
PA

CC
5

in
di

ca
te

st
he

5-
ite

m
Pr

ec
lin

ic
al

Al
zh

ei
m

er
’s

Co
gn

iti
ve

Co
m

po
sit

e.
a

P
<

.0
5.

b
P

<
.0

1.
c

P
<

.0
0

1.

Spatial Extent of Amyloid-β Levels and Associations With Tau-PET and Cognition Original Investigation Research

jamaneurology.com (Reprinted) JAMA Neurology Published online August 22, 2022 E7

© 2022 American Medical Association. All rights reserved.

Downloaded From: https://jamanetwork.com/ by a Scelc - University of Southern California User  on 09/05/2022

http://www.jamaneurology.com?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaneurol.2022.2442


Figure 4. Tau–Positron Emission Tomography (PET) Uptake Across the 3 β-Amyloid (Aβ) Groups
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Six regions were chosen to represent areas of early tau-PET accumulation.35

Tau-PET scans were available for 129 Presymptomatic Evaluation of
Experimental or Novel Treatments for Alzheimer Disease (PREVENT-AD)
participants, 176 Alzheimer Disease Neuroimaging Initiative (ADNI) participants,
and 195 Harvard Aging Brain Study (HABS) participants. A, In PREVENT-AD, the
widespread Aβ group had elevated tau-PET signal when compared with
Aβ-negative and regional Aβ groups across 6 regions. The regional Aβ group
had elevated tau-PET binding only in the entorhinal cortex and middle temporal

gyrus when compared with the Aβ-negative group. B and C, In both ADNI and
HABS, the widespread Aβ group had elevated tau-PET signal compared with
Aβ-negative and regional Aβ groups across all regions. Analyses were corrected
for age and sex. SUVR indicates standardized uptake value ratios.
a P < .001.
b P < .01.
c P < .05.
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beyond the entorhinal cortex and cognitive decline is
prevalent.

Furthermore, our findings highlight the biological rel-
evance of the regional Aβ group. These had intermediate CSF
Aβ1-42 levels between the widespread (lower Aβ1-42) and Aβ-
negative groups (higher Aβ1-42), indicating incipient cere-
bral accumulation of Aβ.39 In addition, the regional groups ac-
cumulated more Aβ fibrils (on PET) than the Aβ-negative group
in ADNI and HABS (longitudinal PET data were not available
in PREVENT-AD). Another crucial difference between groups
in APOE ε4 carrier status: in contrast with the Aβ-negative
group, both regional and widespread Aβ groups had higher per-
centages of APOE ε4 carriers (in PREVENT-AD and ADNI), sug-
gesting increased risk of disease.40 Other recent studies have
shown decreased CSF Aβ1-42 levels in participants with re-
gional Aβ,26,41 and higher proportions of APOE ε4 carriers, as
contrasted with Aβ-negative participants.42 APOE ε4 status is
associated with increased Aβ load across all clinical diagnos-
tic groups.43 Although the participants in this study with wide-
spread Aβ did have detectable tau-PET signal in temporal brain
regions, this tau PET binding was nearly absent in individuals
in the regional Aβ-group using either region-based or voxel-
wise analyses. Regional participants also had similar levels of
CSF pTau181 than Aβ-negative participants (data available for
PREVENT-AD and ADNI). Therefore, as expected, cognitive de-
cline was restricted mainly to widespread Aβ persons. These
data suggest that most individuals with regional Aβ binding
are in the earliest stages of the AD continuum, several years
away from the onset of cognitive decline.

Importantly, regardless of cohort, most participants with
regional Aβ binding had been classified as negative based using
cohort-specific global Aβ thresholds or a visual read. Similar
findings had been found in the Anti-Amyloid Treatment in
Asymptomatic AD (A4) study,38 where quantitative methods
suggested that only 50.1% of those classified as early accumu-
lators had been identified visually as Aβ-positive. Therefore,
unsurprisingly, sensitivity analyses removing participants pre-
viously classified as Aβ-positive using either quantitative
threshold approaches or a visual read showed no important dif-
ference from our main results. When using a 3-tiered Centiloid
approach, removing participants with high Centiloids (>40) in
the regional group made almost no difference on the results,
but removing participants with high and intermediate
Centiloids (>20) obscured most PREVENT-AD and HABS co-
horts’ findings in regional Aβ-binding participants.

Enrollment of regional Aβ-binding persons in clinical trials
may nonetheless be challenging. A regional classification would

be difficult to harmonize in multicenter trials, especially if
these used different tracers. Our findings suggested that
florbetapir, a US Food and Drug Administration–approved
tracer used in ADNI, was less efficient at establishing clear cat-
egories of regional and widespread Aβ accumulation. In the
present analyses, these categories were less distinct, prob-
ably owing to a lower signal-to-noise ratio (found in most 18

F tracers when compared with 11C-Pittsburgh compound B and
18F-NAV-469444). Gaussian mixture modeling analysis, which
we used to define the regional thresholds, was also tracer de-
pendent, and further validation would be needed before ap-
plying current thresholds in other data sets. ROIs that first
showed Aβ positivity also differed across individuals and co-
horts, an observation that could result either from biological
or interindividual pathological differences and tracer propri-
eties (or both). Despite these challenges, we found broadly con-
sistent results across 3 independent cohorts, suggesting that
a regional vs widespread binding approach is biologically mean-
ingful and practicable. As a final caution, we nonetheless note
that restriction of trial eligibility to regional participants would
likely prevent the use of cognitive decline as the primary out-
come of preventive trials as these individuals do not show de-
cline over a window of approximately 7 years. Such trials might
therefore require changes in primary outcomes, such as lon-
gitudinal change in AD biomarkers with the expectation that
such changes will signal subsequent cognitive decline.

Limitations
We also note several limitations. The PREVENT-AD cohort pres-
ently lacks longitudinal PET scans. The HABS cohort lacks CSF
data. Furthermore, across all cohorts, the number of cogni-
tively unimpaired individuals with widespread and regional
Aβ binding was relatively small, a difficulty that we at-
tempted to mitigate in part through the inclusion of 3 inde-
pendent cohorts.

Conclusions
We conclude that assessment of spatial Aβ burden may be a
powerful method for identification of candidates well suited
to clinical trials for prevention of AD progression. As
Aβ-negative persons showed little Aβ accumulation over time
or other evidence of advancing AD pathology, we suggest that
anti-Aβ trials might advantageously enroll individuals lim-
ited to regional Aβ binding as they seek the earliest practical
stage of amyloid signaling for AD pathogenesis.
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